A Novel Palladium-Mediated Cascade Reaction Triggered by Strain Release of the Cyclobutane System. A New General Route to Benzo- and Naphthohydrindans

Hideo Nemoto,* J unji Miyata, Masahiro Yoshida, Naomi Raku, and Keiichiro Fukumoto

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-77, J apan
Received J uly 25, 1997 ${ }^{\circledR}$

Abstract

A novel palladium-mediated cascade reaction was reported. By this procedure, the olefinic cyclobutanols 17, 24, and 31; 41; 37; and 45 afforded the benzo- and naphthohydrindans (46-49, $\mathbf{5 0 - 5 3}, 54-57$, and 58-61) respectively in one operation in the ratios depending on the mediators and sol vents employed. This provides a novel and efficient synthesis of biologically important A-nor and C_{11}-alkylated steroids.

Introduction

In recent years, palladium-mediated cyclization ${ }^{1-3}$ of substrates containing various unsaturated systems has provided general and versatile methods for the synthesis

[^0]of both simple and complex compounds. Of these, cyclic cascade carbopalladations ${ }^{4,5}$ have gained wide acceptance and have now become a rapidly growing area in synthetic organic chemistry, because of their increasing synthetic efficiency. In this context, we have developed a novel palladium-mediated cascade reaction providing a new general route to benzo- and naphthohydrindans (A-nor steroid 9 and equilenin type steroid 10, respectively). The compounds 9 and 10 thus obtained could also be potential intermediates ${ }^{6}$ for the synthesis of A-nor steroids 1-3 ${ }^{7}$ and $\mathrm{C}_{11} \beta$-substituted estradiols 4-6 ${ }^{8}$ which have attracted growing attention owing to their neurosteroid anal ogues (1-3) and high-affinity ligands for the estrogen receptor (4-6), respectively (Figure 1). Here, we report the results.

A goal of this cascade reaction was initiated by complexation (7a and 8a) of palladium followed by ring
(5) For cyclic cascade carbopalladations, see: (a) Abelman, M. M.; Overman, L. E. J. Am. Chem. Soc. 1988, 110, 2328-2329. (b) Carpenter, N. E.; Kucera, D. J.; Overman, L. E. J. Org. Chem. 1989, 54, 5846-5848. (c) Zhang, Y.; Wu, G.; Agnel, G.; Negishi, E. J. Am. Chem. Soc. 1990, 112, 8590-8592. (d) Grigg, R.; Dorrity, M. J .; Malone, J. F.; Sridharan, V.; Sukirthalingam, S. Tetrahedron Lett. 1990, 31, 1343-1346. (e) M eyer, F. E.; de Meijere, A. Synlett 1991, 777-778. (f) Meyer, F. E.; Parsons, P. J.; de Meijere, A. J . Org. Chem. 1991, 56, 6487-6488. (g) Negishi, E.; Harring, L. S.; Owczarczyk, Z.; M ohamud, M. M.; Ay, M. Tetrahedron Lett. 1992, 33, 3253-3256. (h) Negishi, E.; Ay, M.; Sugihara, T. Tetrahedron 1993, 49, 5471-5482. (i) Sugihara, T.; Copéret, C.; Owczarczyk, Z.; Harring, L. S.; Negishi, E. J. Am. Chem. Soc. 1994, 116, 7923-7924.
(6) F or recent studies on the synthesis of benzohydrindans and their transformation into various types of biologically important steroids, see: (a) Nemoto, H.; Ando, M.; Fukumoto, K. Tetrahedron Lett. 1990, 31, 6205-6208. (b) Nemoto, H.; Matsuhashi, N.; Imaizumi, M.; Nagai, M.; Fukumoto, K. J. Org. Chem. 1990, 55, 5625-5631. (c) Nemoto, H.; Satoh, A.; Ando, M.; Fukumoto, K. J . Chem. Soc., Chem. Commun. 1990, 1001-1002; J. Chem. Soc., Perkin Trans. 1 1991, 1309-1314. (d) Nemoto, H.; Matsuhashi, N.; Satoh, A.; Fukumoto, K. J . Chem. Soc., Perkin Trans. 1 1992, 495-498. (e) Nemoto, H.; Satoh, A.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1993, 2237-2238. (f) Nemoto, H.; Satoh, A.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1994, 943946. (g) Nemoto, H.; Satoh, A.; Fukui, H.; Fujimori, S.; Fukumoto, K. Chem. Pharm. Bull. 1994, 42, 1963-1965. (h) Nemoto, H.; Satoh, A.; Fukumoto, K.; Kabuto, C. J. Org. Chem. 1995, 60, 594-600. (i) Nemoto, H.; Satoh, A.; Fukumoto, K. Tetrahedron 1995, 51, 10159-10174. (j) Nemoto, H.; Satoh, A.; Fukumoto, K. Synlett 1995, 199-200.
(7) (a) Rodgers-Neame, N. T.; Covey, D. F.; Hu, Y.; Isenberg, K. E.; Zorumski, C. F. Mol. Pharmacol. 1992, 42, 952-957. (b) Hu, Y.; Zorumski, C. F.; Covey, D. F. J. Org. Chem. 1995, 60, 3619-3625.
(8) (a) Bindal, R. D.; Carlson, K. E.; Reiner, G. C. A.; Katzenellenbogen, J. A. J. Steroid Biochem. 1987, 28, 361-370. (b) Sasson, S.; Katzenellenbogen, J. A. J. Steroid Biochem. 1989, 33, 859-865. (c) Pomper, M. G.; Van Brocklin, H.; Thieme, A. M.; Thomas, R. D.; Kiesewetter, D. O.; Carlson, K. E.; Mathias, C. J.; Welch, M. J.; Katzenellenbogen, J. A. J. Med. Chem. 1990, 33, 3143-3155. (d) Hanson, R. N.; Napolitano, E.; Fiaschi, R. J. Med. Chem. 1990, 33, 3155-3160. (e) Tedesco, R.; Fiashi, R.; Napolitano, E. J. Org. Chem. 1995, 60, 5316-5318.

$1: X=H_{2} ; R=\ldots . H^{\prime}$
$4: R=E t$
$2: X=O ; R=\cdots H$
$5: \mathrm{R}=\mathrm{CH}_{2} \mathrm{Cl}$
$3: X=O ; R=-H$
6 : $\mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$

Figure 1.

Chart 1

expansion (a) of the cyclobutanol ring to a cydopentanone palladium complex ($\rightarrow \mathbf{7 b}$ and $\mathbf{8 b}$), insertion (b) of olefins ($\rightarrow \mathbf{7 c}$ and $\mathbf{8 c}$), and elimination (c) of palladium to give $\mathbf{9}$ and 10 as shown in Chart $1 .{ }^{9}$

Results and Discussion

Synthesis of the Substrates for the Cascade Reaction. The synthesis of the ol efinic cycl obutanols 17, 24, 31, and 37 substrates for the cascade reaction was straightforward (Schemes 1 and 2). The triflate 12, prepared (96\%) from 4-methoxysalicylaldehyde (11), was subjected to the Stille reaction ${ }^{10}$ with tri-n-butylvinyl-
(9) For some previous works on the palladium catalysed ring expansion of cyclobutanes, see: (a) Boontanonda, P.; Grigg, R.J. Chem. Soc., Chem. Commun. 1977, 583-584. (b) Clark, G. R.; Thiensathit, S. Tetrahedron Lett. 1985, 26, 2503-2506. (c) Liebeskind, L. S.; Mitchell, D.; Foster, B. S. J. Am. Chem. Soc. 1987, 109, 7908-7910. (d) Demuth, M.; Pandey, B.; Wietfeld, B.; Said, H.; Viader, J. Helv. Chim. Acta 1988, 71, 1392-1398. (e) deAlmeida Barbosa, L.-C.; Mann, J. J. Chem. Soc., Perkin Trans. 1 1990, 177-178. (f) Mitchell, D.; Liebeskind, L. S. J. Am. Chem. Soc. 1990, 112, 291-296. (g) Nemoto, H.; Nagamochi, M.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1993, 2329-2332. (h) Nemoto, H.; Nagamochi, M.; I shibashi, H.; Fukumoto, K. J. Org. Chem. 1994, 59, 74-79. (i) Nemoto, H.; Shiraki, M.; Fukumoto, K. Synlett 1994, 599-600. (j) Nemoto, H.; Miyata, J.; Fukumoto, K. Tetrahedron 1996, 52, 10363-10374. For review, see: (k) Liebeskind, L. S.; Chidambaram, R.; Mitchell, D.; F oster, B. S. Pure Appl. Chem. 1988, 60, 27-34.
stannane to give the styrene 13 (90\%), which upon the Wittig reaction with cyclopropylidenetriphenylphosphorane under modified McMurry conditions ${ }^{11}$ afforded the cyclopropylidene derivative 14 (97\%). Successive treatment of 14 with m-chloroperbenzoic acid (mCPBA) and then fluoroboric acid gave, via the epoxide 15, the cyclobutanone 16 (83\%) which was then converted to 17 (95\%) stereoselectively by the Grignard reaction with isopropenylmagnesium bromide in the presence of cerium trichloride. By following the same procedure, 24, 31, and 37 were prepared in 36%, 30%, and 20% overall yields starting from 18, 25, and 32^{12} via 19-23, 26-30, and 33-36 respectively. ${ }^{13}$

The diastereoisomer 41 was also prepared in 39\% overall yield by successive chlorination of 31, substitution of the chloride 38 with thiophenoxide, oxidation of the sulfide 39, and stereoselective [2,3]sigmatropic rearrangement of the resulting sulfoxide 40. By following the same procedure, the diastereoi somer 45 was prepared in 42% overall yield starting from 37 via 42-44 (Scheme 3). ${ }^{14}$

Cascade Ring Expansion and Insertion Reaction. As a preliminary experiment, the cascade reaction of $\mathbf{1 7}$ was examined using various types of mediators and solvents (Table 1). The reaction proceeded in moderate yield (up to 55%, entry 2) to give the four possible isomers 46-49 depending upon the reaction conditions. Although no stereoselectivity was observed in entries $1,2,3,8,11$, and 17 (48:49/50:50), a moderate (48:49/40:60 in entry 10, $25: 75$ in entry 12 , and $20: 80$ in entry 7, and 46:47/ 17:83 in entries 9 and 13) to high cis stereoselectivity (48:49/9:91 in entry 16 and 46:47/4:96 in entry 14) was recognized. In contrast to these, a moderate trans stereosel ectivity (48:49/75:25) was found in entries 4-6.

These characteristic features were found in the same reaction of the substrates $\mathbf{2 4}, \mathbf{3 1}$, and 41 examined under the conditions corresponding to entries 2, 6, and 15 in Table 1, although somewhat greater tendencies toward cis preference were observed in the case of $\mathbf{3 1}$ and 41 (entries 2, 3, 5, 6, and 8 in Table 2). In contrast to the greater cis preference for 41 (entries 3 and 6) than that for 31 (entries 2 and 5), theremarkable reverse tendency of 41 favoring trans (entry 9) comparing with the complete cis selectivity (entry 8) of 31 was noteworthy. Thus, the general features of this reaction were confirmed.

On the basis of the findings described above, our attention was turned to the development of the cascade method to C_{11} alkylated equilenin-type steroid 10.

The cascade reaction of $\mathbf{3 7}$ and $\mathbf{4 5}$ was examined under the same conditions as outlined in Table 2 (Table 3). In entry 3, trans selectivity which was observed in entries 5 and 6 in Table 1 and entries 4 and 5 in Table 2 was reduced to almost a 50:50 mixture of cis and trans. A high degree of cis selectivity was found in entry 8,

[^1]
Scheme 1

Scheme 2

$36: X=0$

although the high cis selectivity was observed in the case of benzohydrindans (entries 14 and 15 in Table 1 and entries 7 and 8 in Table 2). In the case of the isomeric substrate 45, the moderate cis (entry 4) and trans (entry 8) selectivities were observed.

From these results, it could be emphasized that the stereoselectivity in these cascade reactions markedly changes from the substrates 17 (Table 1), 24, and 31 (Table 2) to 37 (Table 3), favoring cis stereochemistry under the same conditions, and the reverse stereoselectivities were observed in the isomeric substrates 41 and 45 compared with 31 and 37 , respectively. ${ }^{15}$

Finally, we have examined the catalytic process for this cascade reaction of $\mathbf{3 1}$ as a typical example using a

[^2]catalytic amount of palladium(II) catalyst with some reoxidants (Table 4).

From these results, it became clear that this cascade reaction could be done catalytically with palladium(II) in rather higher yield compared to that with an equimoIar amount of palladium(II) under comparable conditions, beside the additives (entry 8 in Table 2), making this process efficient, although the catalytic reaction proceeded slowly. Thus, we could disclose a novel palladiummediated cascade reaction providing a general route to the stereoselective synthesis of benzo- and naphthohydrindans.

Experimental Section

General Procedure. All nonaqueous reactions were carried out under a positive atmosphere of argon in rigorously dried glassware unless indicated otherwise. Materials were obtained from commercial suppliers and used without further purification except when otherwise noted. Solvents were distilled prior to use: THF, $\mathrm{Et}_{2} \mathrm{O}$, hexane, and DME were freshly distilled from sodium benzophenone; $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{ClCH}_{2-}$ $\mathrm{CH}_{2} \mathrm{Cl}, \mathrm{DMF}$, and triethylamine were distilled from CaH_{2} and stored over $4 \AA$ À molecular sieves. The phrase "residue upon workup" refers to the residue obtained when the organic layer was separated and dried over anhydrous MgSO_{4} and the sol vent was evaporated under reduced pressure. Chromatography was carried out by using Merck 60 (230-400 mesh) or Cica 60 (spherical/ $40-100 \mu \mathrm{~m}$) silica gel. Reactions and chromatography fractions were analyzed by employing precoated silica gel 60F 254 plates (Merck).

General Experimental Procedures for Schemes 1 and 2. Experimental Details for the Synthesis of 17 via 12, 13, 14, and 16. 2-[[(Trifluoromethyl)sulfonyl]oxy]-4methoxybenzaldehyde (12). To a stirred solution of 4 -methoxysalicylaldehyde (11) ($10.0 \mathrm{~g}, 65.7 \mathrm{mmol}$) and a catalytic amount of 4-(dimethylamino)pyridine (DMAP) in pyridine (130 mL) was added trifluoromethanesulfonic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$) ($12.2 \mathrm{~mL}, 72.3 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and stirring was continued for 1 h at room temperature. The resulting solution was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed sequentially with $10 \% \mathrm{HCl}$, saturated aqueous NaHCO_{3}, and NaCl . The residue upon workup was chromatographed on silica gel with hexane-AcOEt ($9: 1 \mathrm{v} / \mathrm{v}$) as eluant to give the triflate $\mathbf{1 2}(17.8 \mathrm{~g}, 96 \%)$ as a colorless oil.

4-Methoxy-2-vinylbenzaldehyde (13). To a slurry of LiCl ($1.44 \mathrm{~g}, 33.9 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($159 \mathrm{mg}, 0.226 \mathrm{mmol}$) in THF (110 mL) was added a solution of the triflate $12(3.22 \mathrm{~g}$, 11.3 mmol) and vinyltributyltin ($4.0 \mathrm{~mL}, 13.6 \mathrm{mmol}$). The mixture was refluxed for 1 h with stirring, cooled to room temperature, and diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The resulting

1) $\mathrm{SOCl}_{2}, \mathrm{Py}$
2) $\mathrm{PhSH}, \mathrm{NaH}$
31
3) mCPBA NaHCO_{3}
same for 31

same for 40
42: $\mathrm{X}=\mathrm{Cl}$
$43: X=S P h$
$44: X=S(0) P h$

41

45

Table 1. Cascade Ring Expansion and Insertion Reaction of $\mathbf{1 7}^{\text {a }}$

${ }^{\text {a }}$ The reaction was carried out under argon at room temperature by using an equimolar amount of mediator. ${ }^{\text {b }}$ The isomer (46, 47, 48, and 49) ratio was determined by ${ }^{1} \mathrm{H}$ NMR integration of angular methyl signals ($\delta 0.68$ for $\mathbf{4 6}, \delta 1.07$ for $\mathbf{4 7}, \delta 0.70$ for 48, and $\delta 1.04$ for 49). ' All yields were isolated one. The yields in parentheses were based on recovered 17.
solution was washed sequentially with water, $10 \% \mathrm{NH}_{4} \mathrm{OH}$, water, and saturated aqueous NaCl . The residue upon workup was chromatographed on silica gel with hexane-AcOEt (9:1 v / v) as eluant to give the vinylbenzaldehyde 13 ($1.89 \mathrm{~g}, 90 \%$) as a colorless oil.

4-(Cyclopropylidenemethyl)-3-vinylanisole (14). To a stirred suspension of NaH (98.4 mg , of 60% oil suspension, 2.46 mmol) in THF (7 mL) was added cyclopropyltriphenylphosphonium bromide ($0.945 \mathrm{~g}, 2.46 \mathrm{mmol}$) at room temperature. After the mixture had been stirred for 10 h at $62{ }^{\circ} \mathrm{C}$, a solution of the aldehyde $\mathbf{1 3}$ ($200 \mathrm{mg}, 1.23 \mathrm{mmol}$) in THF (3 mL) was added in 30 min , and stirring was continued for 1.5 h at the same temperature. The reaction mixture was
diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with saturated aqueous NaCl . The residue upon workup was chromatographed on silica gel with hexane-AcOEt ($9: 1 \mathrm{v} / \mathrm{v}$) as eluant to give the cyclopropylidene derivative 14 ($222 \mathrm{mg}, 97 \%$) as a colorless oil.

2-(4-Methoxy-2-vinylphenyl)cyclobutanone (16). To a stirred solution of the cyclopropylidene derivative $\mathbf{1 4}$ (49.3 mg , $0.265 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added m -chloroperbenzoic acid (mCPBA) (51.9 mg , of 80% purity, 0.265 mmol) at $0{ }^{\circ} \mathrm{C}$, and stirring was continued for 2 h at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was washed with saturated aqueous NaHCO_{2} and NaCl . To a stirred solution of the residue upon workup in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $10 \% \mathrm{HBF}_{4}(0.5 \mathrm{~mL})$. The mixture

Table 2. Cascade Ring Expansion and Insertion Reaction of 24, 31, and 41a

a The reaction was carried out under argon at room temperature by using an equimolar amount of mediator. ${ }^{\mathrm{b}}$ The product ratios for entries 1, 4, and 7 corresponded to 50:51:52:53 and were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integration of angular methyl signals ($\delta 0.61$ for $\mathbf{5 0}$, δ 1.01 for $51, \delta 0.67$ for 52 , and $\delta 1.01$ for 53). For entries $2,3,5,6,8$, and 9 , the initial products were subjected to deprotection and analyzed. So, these product ratios corresponded to $54 \mathrm{i}(\mathrm{R}=\mathrm{OH})$, $55 \mathrm{i}(\mathrm{R}=\mathrm{OH}), 56 \mathrm{i}(\mathrm{R}=\mathrm{OH})$, and $57 \mathrm{i}(\mathrm{R}=\mathrm{OH})$ and were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integration of angular methyl signals ($\delta 0.61$ for $\mathbf{5 4 i}, \delta 1.14$ for $\mathbf{5 5 i}, \delta 0.69$ for $\mathbf{5 6 i}$, and $\delta 1.03$ for $\mathbf{5 7 i}$). c All yields were isolated one. The yields in parentheses were based on recovered 31 and 41.

Table 3. Cascade Ring Expansion and Insertion Reaction of 37 and 45a

	$\begin{aligned} & 37 \\ & 45 \end{aligned}$	58	59		61	
					product	
entry	substrate	mediator	solvent	time (h)	ratio ${ }^{\text {b }}$	yield (\%) ${ }^{\text {c }}$
1	37	$\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$	DME	10	23:23:14:40	81
2	45	$\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$	DME	10	22:26:20:32	63
3	37	$\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$	DMF	10	4:15:48:33	56
4	45	$\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$	DMF	10	2:9:16:73	79
$5^{\text {d }}$	37	$\mathrm{Pd}(\mathrm{OAc})_{2}\left(\mathrm{AsPh}_{3}\right)_{2}$	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$			
$6^{\text {d }}$	45	$\mathrm{Pd}(\mathrm{OAC})_{2}\left(\mathrm{AsPh}_{3}\right)_{2}$	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$			
7	37	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	10	0:83:0:17	69
8	45	$\mathrm{Pd}(\mathrm{OAC})_{2}$	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	10	50:20:26:4	46

a The reaction was carried out under argon at room temperature by using an equimolar amount of mediator. b The isomer ratio was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integration of angular methyl signals ($\delta 0.55$ for 58, $\delta 1.19$ for 59, $\delta 0.67$ for $\mathbf{6 0}, \delta 1.15$ for 61, respectively). ${ }^{\mathrm{c}}$ All yields were isolated one. ${ }^{\text {d Unidentified complex mixture was formed. }}$
was stirred for 0.5 h at room temperature and washed with saturated aqueous NaHCO_{3} and NaCl . The residue upon workup was chromatographed on silica gel with hexaneAcOEt (95:5 v/v) as eluant to give the cycl obutanone 16 (44.7 mg, 83\%) as a colorless oil.
(15*,2S*)-1-I sopropenyl-2-(4-methoxy-2-vinylphenyl)cyclobutanol (17). To a stirred suspension of $\mathrm{CeCl}_{3}(3.80$ $\mathrm{g}, 15.4 \mathrm{mmol}$) in THF (45 mL) was added a 1.0 M solution of isopropenylmagnesium bromide in THF ($15.4 \mathrm{~mL}, 15.4 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring had been continued for 1 h , a solution of the cyclobutanone 16 ($1.04 \mathrm{~g}, 5.14 \mathrm{mmol}$) in THF (15 mL) was added dropwise to this reaction mixture at the same temperature and the temperature was then increased to room temperature in 2 h . The reaction mixture was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with saturated aqueous NaCl . The residue upon workup was chromatographed on silica gel with hexane-AcOEt (98:2 v/v) as eluant to give the cyclobutanol 17 ($1.20 \mathrm{mg}, 95 \%$) as a colorless oil.

Characterization Data for Schemes 1 and 2. 12: IR (neat) $1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.93(3 \mathrm{H}, \mathrm{s})$,
$6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2$ and 8.8 Hz$)$, $7.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 10.13(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 56.2,108.3,114.2,116.5,121.8,132.5,151.3,165.5$, 185.6; MS m/ z $283\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S} 283.9966$ $\left(\mathrm{M}^{+}\right)$, found 283.9966 .

13: IR (neat) $1690 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300{\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.91}\right.$ $(3 \mathrm{H}, \mathrm{s}), 5.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.5$ and 11.0 Hz$), 5.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 1.5 and 17.0 Hz$), 6.93(1 \mathrm{H}$, dd, $\mathrm{J}=2.6$ and 8.4 Hz$), 7.02(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=2.6 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0$ and 17.0 Hz$), 7.79(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 10.15(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 54.9$, 111.7, 112.9, 118.5, 126.1, 133.0, 133.6, 142.2, 190.3; MS m/ z $162\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2} 162.0680\left(\mathrm{M}^{+}\right)$, found 162.0681.

14: IR (neat) $1620 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.14-$ $1.19(2 \mathrm{H}, \mathrm{m}), 1.34-1.39(2 \mathrm{H}, \mathrm{m}), 3.83(3 \mathrm{H}, \mathrm{s}), 5.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=1.5$ and 11.0 Hz$), 5.63(1 \mathrm{H}$, dd, $\mathrm{J}=1.5$ and 21.0 Hz$), 6.83$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.6$ and 8.4 Hz$), 6.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.6 \mathrm{~Hz}), 6.98$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), $7.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0$ and 21.0 Hz), $7.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.0,4.0,55.2,110.8$, 114.1, 114.8, 116.2, 123.9, 127.9, 129.0, 135.0, 136.9, 158.7;

A Novel Palladium-Mediated Cascade Reaction
Table 4. Catalytic Process for Cascade Ring Expansion and Insertion Reaction of 31 ${ }^{\text {a }}$
$\mathbf{3 1} \rightarrow 54+55+56+57$

entry	additive	solvent	$\begin{aligned} & \text { time } \\ & \text { (day) } \end{aligned}$	product	
				$\begin{gathered} \text { ratio } \\ (54: 55: 56: 57)^{\text {b }} \end{gathered}$	yield (\%) ${ }^{\text {c }}$
1	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	37	8:92:0:0	77
29a	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	33	12:86:1:1	66
$33^{9 b, d}$	benzoquinone	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	36	2:98:0:0	77
4^{16}		DMSO	25	34:64:0:2	44

a The reaction was carried out under an argon (entries 1 and 3) or oxygen (entries 2 and 4) atmosphere at room temperature by using 0.1 equimolar amount of $\mathrm{Pd}(\mathrm{OAc})_{2}\left(\mathrm{AsPh}_{3}\right)_{2}$ as catalyst and 2 equimolar amounts of additives (entries 1-3). ${ }^{\text {b }}$ The product ratios corresponded to 54i:55i:56i:57i. ${ }^{\text {c }}$ The yields were isolated one.

MS m/ z $186\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O} 186.1044\left(\mathrm{M}^{+}\right)$, found 186.1045 .

16: IR (neat) $1780 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.05-$ $2.19(1 \mathrm{H}, \mathrm{m}), 2.45-2.58(1 \mathrm{H}, \mathrm{m}), 2.95-3.09(1 \mathrm{H}, \mathrm{m}), 3.13-$ $3.27(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 4.66-4.73(1 \mathrm{H}, \mathrm{m}), 5.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=1.1$ and 11.0 Hz$), 5.63(1 \mathrm{H}$, dd, J $=1.1$ and 17.0 Hz$), 6.80$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.8$ and 8.5 Hz$), 6.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0$ and 17.0 $\mathrm{Hz}), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 18.7, $44.4,55.2,61.6,111.7,113.4$, 116.7, 126.8, 127.8, 134.6, 137.9, 158.8, 208.8; MS m/ z 186 (M^{+}); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}$ 186.1044 (M^{+}), found 186.1044.

17: IR (neat) $3500,1620 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.51(1 \mathrm{H}, \mathrm{s}), 1.83(3 \mathrm{H}, \mathrm{s}), 1.83-1.91(1 \mathrm{H}, \mathrm{m}), 2.04-2.41(1 \mathrm{H}$, $\mathrm{m}), 2.37-2.47(2 \mathrm{H}, \mathrm{m}), 3.83(3 \mathrm{H}, \mathrm{s}), 3.95(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz})$, $4.84(1 \mathrm{H}, \mathrm{br}$ s), $5.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.0$ and 7.3 $\mathrm{Hz}), 5.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.0$ and 16.0 Hz$), 6.89(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.9$ and 9.0 Hz$), 6.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.3$ and 16.0 Hz$), 7.00(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=2.9 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}) $\delta 18.7,20.8,31.0,43.9,55.1,80.6,110.1,111.9,113.2$, 116.4, 128.0, 129.5, 135.4, 139.4, 148.6, 158.5; MS m/z 244 (M^{+}); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} 244.1462\left(\mathrm{M}^{+}\right)$, found 244.1463.

19: yield 100%; mp $50{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$); IR $\left(\mathrm{CHCl}_{3}\right) 1700$ cm^{-1}; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.97(3 \mathrm{H}, \mathrm{s}), 7.31(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=1.0$ and 7.8 Hz$), 7.47(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=1.0$ and 7.8 Hz), $10.26(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $56.54,116.7,118.7,120.9,121.3,129.7,151.9,186.8 ;$ MS m/z 151 (M ${ }^{+}$-133). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 38.04 ; \mathrm{H}, 2.48$; S, 11.28. Found: C, $38.27 ; \mathrm{H}, 2.52 ; \mathrm{S}, 11.40$.

20: yield 91%; mp $59{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$); IR (CHCl_{3}) $1690 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.90(3 \mathrm{H}, \mathrm{s}), 5.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 1.6 and 18.0 Hz), $5.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.6$ and 11.0 Hz$), 7.05(1 \mathrm{H}$, dd, $\mathrm{J}=11.0$ and 18.0 Hz), $7.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.0$ and 8.6 Hz$)$, $7.37(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.0$ and 8.6 Hz$)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.37,114.6,119.8,123.6,128.4$, 131.3, 135.2, 157.3, 192.0; MS m/z $162\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}: \mathrm{C}, 74.06 ; \mathrm{H}, 6.21$. Found: C, $74.01 ; \mathrm{H}, 6.29$.

21: yield 86%; oil; IR (neat) $1580 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.13-1.18(2 \mathrm{H}, \mathrm{m}), 1.36-1.42(2 \mathrm{H}, \mathrm{m}), 3.82(3 \mathrm{H}, \mathrm{s})$, $5.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0$ and 17.0 Hz$), 5.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0$ and $11.0 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{br}$ s), $6.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0$ and 17.0 Hz), $7.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.1$ and 7.0 Hz$), 7.18(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz})$, $7.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.1$ and 7.0 Hz$)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.9,4.0,55.6,108.6,116.8,119.4,120.8,125.2,127.7,131.1$, 133.1, 137.4, 157.6; MS m/z 186 (M^{+}); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}$ 186.1044 (M^{+}), found 186.1050.

23: yield 55%; oil; IR (neat) $1780,1580 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.12-2.19(1 \mathrm{H}, \mathrm{m}), 2.47-2.49(1 \mathrm{H}, \mathrm{m}), 3.04-$ $3.20(2 \mathrm{H}, \mathrm{m}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.86(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}), 5.53(1 \mathrm{H}$, dd, J $=1.5$ and 18.0 Hz), $5.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.5$ and 11.0 Hz), $6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0$ and 18.0 Hz$), 6.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz})$, $6.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.6,44.5,55.4,62.5,109.2,119.3,120.1$, 126.7, 128.2, 131.2, 135.9, 157.6, 208.7; MS m/z $202\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 77.13 ; \mathrm{H}, 6.99$. Found: $\mathrm{C}, 77.11$; H, 7.08.

24: yield 83%; oil; IR (neat) $3400 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.85(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.88-2.19(2 \mathrm{H}, \mathrm{m}), 2.31-2.48(2 \mathrm{H}$, $\mathrm{m}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.17(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.8$ and 16.0 Hz$), 4.83(1 \mathrm{H}$,

J. Org. Chem., Vol. 62, No. 22, 19977855

br s), $5.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2$ and 17.0 Hz$), 5.50$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2$ and 11.0 Hz), $6.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0$ and 17.0 $\mathrm{Hz}), 6.83(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.0$ and 7.5 Hz$), 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.0$ and 7.5 Hz), $7.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}) $\delta 18.9,21.7,31.8,44.5,55.7,80.6,109.4,110.1,120.6$, 120.8, 128.0, 128.2, 131.6, 138.1, 148.6, 157.7; MS m/ z 244 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 78.72 ; \mathrm{H}, 8.26$. Found: C, 78.72; H, 8.06.

26: yield 98\%; oil; IR (neat) $1705 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.31(6 \mathrm{H}, \mathrm{s}), 1.01(9 \mathrm{H}, \mathrm{s}), 7.26(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.5$ and $7.8 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.5$ and 7.8 Hz), $10.21(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.7,18.4$, 25.5, 116.5, 120.5, 122.1, 126.5, 128.8, 129.8, 148.8, 186.8; MS $\mathrm{m} / \mathrm{z} 327\left(\mathrm{M}^{+}-57\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{SSi}: \mathrm{C}, 46.04$; H, 5.31; S, 9.45. Found: C, 46.24; H, 5.41; S, 9.36.

27: yield 50%; oil; IR (neat) $1700 \mathrm{~cm}^{-1}$; $1 \mathrm{H}-\mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.20(6 \mathrm{H}, \mathrm{s}), 1.00(9 \mathrm{H}, \mathrm{s}), 5.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.1$ and $16.0 \mathrm{~Hz}), 5.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.1$ and 11.0 Hz$), 6.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=11.0$ and 16.0 Hz$), 7.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.2$ and 7.8 Hz$), 7.26$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.2$ and 7.8 Hz$), 10.19$ (1H, s); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.2,18.2,26.0,121.3$, 123.9, 124.1, 128.2, 129.7, 134.2, 136.0, 154.0, 192.8; MS m/ z $262\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 74.04 ; \mathrm{H}, 6.23$. Found: C, 74.38; H, 6.04.

28: yield 84%; oil: IR (neat) $1620 \mathrm{~cm}^{-1}$; 1H-NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.22(6 \mathrm{H}, \mathrm{s}), 1.00(9 \mathrm{H}, \mathrm{s}), 1.13-1.20(2 \mathrm{H}, \mathrm{m}), 1.37-$ $1.45(2 \mathrm{H}, \mathrm{m}), 5.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.3$ and 17.9 Hz$), 5.58(1 \mathrm{H}, \mathrm{dd}$, $J=2.3$ and 11.6 Hz$), 6.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=11.6$ and 17.9 Hz$), 7.09(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.1$ $\mathrm{Hz}), 7.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-4.1,0.8,4.0,18.3,25.8,117.2,117.4,119.9,120.8,124.6$, 127.4, 128.9, 132.0, 137.7, 153.7; MS m/z 286 (M^{+}). Anal Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{OSi}: \mathrm{C}, 75.46 ; \mathrm{H}, 9.15$. Found: C, $75.22 ; \mathrm{H}$, 8.89 .

30: yield 86%; oil; IR (neat) $1790,1630 \mathrm{~cm}^{-1}$; $1 \mathrm{H}-\mathrm{NMR}$ (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.19(6 \mathrm{H}, \mathrm{s}), 0.99(9 \mathrm{H}, \mathrm{s}), 2.08-2.22(1 \mathrm{H}, \mathrm{m})$, 2.40-2.54 (1H, m), 2.96-3.09 (1H, m), 3.11-3.25 (1H, m), $4.79-4.88(1 \mathrm{H}, \mathrm{m}), 5.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1$ and 18.0 Hz$), 5.50$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1$ and 11.4 Hz), $6.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.4$ and 18.0 $\mathrm{Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.10$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.1,18.2$, $19.9,25.8,44.7,63.0,118.0,120.0,120.3,128.0,130.0,132.4$, 136.3, 153.7, 209.3; MS m/z 302 (M+); HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si} 302.1701\left(\mathrm{M}^{+}\right)$, found 302.1729 .

31: yield 74%; oil; IR (neat) $3500,1640 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.17(3 \mathrm{H}, \mathrm{s}), 0.18(3 \mathrm{H}, \mathrm{s}), 0.97(9 \mathrm{H}, \mathrm{s}), 1.65$ ($1 \mathrm{H}, \mathrm{br}$ s), $1.84(3 \mathrm{H}, \mathrm{br}$ s), 1.92-2.16(2H, m), 2.29-2.44 (2H, m), 4.12-4.19 ($1 \mathrm{H}, \mathrm{m}$), 4.81-4.84 (1H , m), $5.00(1 \mathrm{H}, \mathrm{br}$ s), 5.34 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1$ and 17.9 Hz), $5.47(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1$ and 11.4 $\mathrm{Hz}), 6.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.4$ and 17.9 Hz$), 6.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.6$ and 6.9 Hz$), 7.17(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.6$ and 6.9 Hz); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.2,-4.1,18.2$, 18.9, 21.7, 25.8, 31.8, 44.7, 80.6, 110.0, 118.0, 120.7, 121.2, 127.6, 131.3, 132.5, 138.2, 148.6, 153.6; MS m/z 344 (M^{+}). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 73.20 ; \mathrm{H}, 9.36$. Found: C , 72.82; H, 9.12.

34: yield 58% (from 32); mp $74{ }^{\circ} \mathrm{C}$ (from MeOH); IR $\left(\mathrm{CHCl}_{3}\right)$ $1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1$ and 18.2 Hz), $6.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1$ and 11.8 Hz$), 7.37(1 \mathrm{H}$, dd, J $=11.8$ and 18.2 Hz), 7.54-7.66 (2H, m), $7.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.6 \mathrm{~Hz}), 7.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz})$, $8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 10.44(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}) $\delta 122.9,125.9,126.1,127.0,128.1,128.5,128.9,130.6$, 131.4, 131.6, 135.8, 143.4, 192.8; MS m/z 182 (M+). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}: \mathrm{C}, 85.69 ; \mathrm{H}, 5.53$. Found: C, 85.84; $\mathrm{H}, 5.81$.

35: yield 86%; oil; IR (neat) $1620 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.14-1.23(2 \mathrm{H}, \mathrm{m}), 1.46-1.55(2 \mathrm{H}, \mathrm{m}), 5.45(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=2.1$ and 18.0 Hz$), 5.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1$ and 11.8 Hz$), 7.13$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.8$ and 18.0 Hz), $7.25(1 \mathrm{H}, \mathrm{s}), 7.38-7.49(2 \mathrm{H}$, m), $7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 8.03$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 8.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.7,4.4,117.2,122.4,124.4,125.4,125.5,125.7$, 125.8, 126.1, 127.3, 128.2, 132.2, 132.7, 132.9, 133.8; MS m/ z $206\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{14} 206.1095\left(\mathrm{M}^{+}\right)$, found 206.1098.

36: yield 80\%; oil; IR (neat) $1780 \mathrm{~cm}^{-1}$; $1 \mathrm{H}-\mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.17-2.29(1 \mathrm{H}, \mathrm{m}), 2.46-2.61(1 \mathrm{H}, \mathrm{m}), 3.02-3.14(1 \mathrm{H}$,
m), 3.17-3.32 (1H, m), 4.98-5.08(1H, m), $5.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 2.1 and 18.2 Hz$), 5.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1$ and 11.8 Hz$), 7.18(1 \mathrm{H}$, dd, J $=11.8$ and 18.2 Hz), $7.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.40-7.51$ ($2 \mathrm{H}, \mathrm{m}$), 7.72-7.82 (2H, m), 8.01-8.09 (1H, m); ${ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.6,45.0,63.4,122.3,124.7,125.8,125.9$, $126.3,128.0,128.2,131.5,132.0,132.6,134.0,135.6,209.2$; MS m/ z $222\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 86.45 ; \mathrm{H}, 6.35$. Found: C, 86.17; H, 6.31 .

37: yield 82%; oil; IR (neat) $3400 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.52(1 \mathrm{H}, \mathrm{s}), 1.84(3 \mathrm{H}, \mathrm{s}), 2.01-2.11(1 \mathrm{H}, \mathrm{m}), 2.12-$ $2.21(1 \mathrm{H}, \mathrm{m}), 2.40-2.59(2 \mathrm{H}, \mathrm{m}), 4.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}), 4.81$ $(1 \mathrm{H}, \mathrm{s}), 4.97(1 \mathrm{H}, \mathrm{s}), 5.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.3$ and 17.6 Hz$), 5.74$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.3$ and 11.2 Hz$), 6.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.2$ and 17.6 $\mathrm{Hz}), 7.12-7.27(1 \mathrm{H}, \mathrm{m}), 7.40-7.47(2 \mathrm{H}, \mathrm{m}), 7.76-7.83(3 \mathrm{H}$, $\mathrm{m}), 8.05-8.12(1 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.9,21.7$, 37.5, 44.8, 81.4, 110.0, 122.1, 125.5, 126.0, 126.2, 126.3, 127.2, 128.1, 131.9, 132.6, 133.5, 134.5, 136.7, 148.7; MS m/ z 264 $\left(\mathrm{M}^{+}\right)$. Anal. Cal cd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 86.32 ; \mathrm{H}, 7.63$. Found: C, 85.95; H, 7.74.

General Experimental Procedures for Scheme 3. Experimental Details for the Synthesis of 41 via 38-40. 1-[3-(tert-Butyldimethylsiloxy)-2-vinylphenyl]-2-(1-meth-yl-2-thiophenylethylidene)cyclobutane (39). To a stirred solution of the cyclobutanol 31 ($1.11 \mathrm{~g}, 3.22 \mathrm{mmol}$) and pyridine ($0.52 \mathrm{~mL}, 6.4 \mathrm{mmol}$) in THF (30 mL) was added thionyl chloride ($0.31 \mathrm{~mL}, 4.2 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and stirring was continued for 1 h at room temperature. The reaction mixture was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with saturated aqueous NaCl . The residue upon workup was dissolved in DMF (5 mL). To a stirred suspension of $\mathrm{NaH}(0.26 \mathrm{~g}$, of 60% oil suspension, 6.5 $\mathrm{mmol})$ was added thiophenol $(0.83 \mathrm{~mL}, 8.1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and stirring was continued. After 10 min , to the reaction mixture was added a solution of the residue at $0^{\circ} \mathrm{C}$ and stirring was continued for 6 h at room temperature. The resulting solution was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with 10% aqueous NaOH and saturated aqueous NaCl . The residue upon workup was chromatographed on silica gel with hexane-AcOEt ($99: 1 \mathrm{v} / \mathrm{v}$) as eluant to give the phenyl sulfide 39 ($822 \mathrm{mg}, 58 \%$) as a col orless oil.

1-[3-(tert-Butyldimethylsiloxy)-2-vinylphenyl]-2-[1-methyl-2-(phenylsulfinyl)ethylidene]cyclobutane (40). To a stirred sol ution of the sulfide $39(57.9 \mathrm{mg}, 0.133 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ were added $\mathrm{NaHCO}_{3}(22.3 \mathrm{mg}, 0.266 \mathrm{mmol})$ and m-chloroperbenzoic acid (m-CPBA) ($28.6 \mathrm{mg}, 80 \%, 0.133$ mmol) at $-78{ }^{\circ} \mathrm{C}$ and stirring was continued for 1 h at the same temperature. The temperature was increased to $0^{\circ} \mathrm{C}$ in 1 h . The reaction mixture was diluted water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with saturated aqueous NaCl . The residue upon workup was chromatographed on silica gel with hexane-AcOEt ($92: 8 \mathrm{v} / \mathrm{v}$) to give the sulfoxide ($54.6 \mathrm{mg}, 91 \%$) as a colorless oil.
(1R*,2S*)-2-[3-(tert-Butyldimethylsiloxy)-2-vinylphenyl]-1-isopropenylcyclobutan-1-ol (41). A solution of the sulfoxide 40 ($775 \mathrm{mg}, 1.71 \mathrm{mmol}$) and trimethyl phosphite (2.2 $\mathrm{mL}, 19 \mathrm{mmol})$ in methanol (60 mL) was refluxed for 9 h . The solvent was evaporated and the residue was chromatographed on silica gel with hexane-AcOEt (98.5:1.5 v/v) to give the cyclobutanol 41 ($440 \mathrm{mg}, 75 \%$) as a colorless oil.

Characterization Data for Scheme 3. 39 ($\mathrm{E}: Z / 19: 81$): IR (neat) $1630 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.17$ (3H, s), $0.19(3 \mathrm{H}, \mathrm{s}), 0.98(9 \mathrm{H}, \mathrm{s}), 1.38-1.42(2.43 \mathrm{H}, \mathrm{m}), 1.62-1.83$ $(1.57 \mathrm{H}, \mathrm{m}), 2.19-2.36(1 \mathrm{H}, \mathrm{m}), 2.37-2.63(1.81 \mathrm{H}, \mathrm{m}), 2.63-$ $2.72(0.19 \mathrm{H}, \mathrm{m}), 3.02(0.19 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}), 3.31-3.41$ $(1 \mathrm{H}, \mathrm{m}), 3.63(0.81 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}), 4.03-4.13(0.19 \mathrm{H}$, $\mathrm{m}), 4.26-4.34(0.81 \mathrm{H}, \mathrm{m}), 5.32(0.19 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1$ and 18.3 Hz$)$, $5.37(0.81 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1$ and 17.3 Hz$), 5.43(0.19 \mathrm{H}$, dd, J $=2.1$ and 11.7 Hz$), 5.45(0.81 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1$ and 11.9 Hz$), 6.56-$ $6.71(2.81 \mathrm{H}, \mathrm{m}), 6.92-6.98(1 \mathrm{H}, \mathrm{m}), 7.06(0.19 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8$ $\mathrm{Hz}), 7.15-7.36(3.38 \mathrm{H}, \mathrm{m}), 7.41-7.47(1.62 \mathrm{H}, \mathrm{m})$; MS m/ z 436 $\left(\mathrm{M}^{+}\right)$: HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{36}$ OSSi $436.2254\left(\mathrm{M}^{+}\right)$, found 436.2258.

40 ($\mathrm{E}: \mathrm{Z} / 20: 80$): IR (neat) $1630 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.25-0.35(6 \mathrm{H}, \mathrm{m}), 0.95-1.06(9 \mathrm{H}, \mathrm{m}), 1.34-1.43$ $(2.4 \mathrm{H}, \mathrm{m}), 1.64-1.79(1.6 \mathrm{H}, \mathrm{m}), 1.79-2.07(0.4 \mathrm{H}, \mathrm{m}), 2.08-$ $2.42(1.6 \mathrm{H}, \mathrm{m}), 2.42-2.73(1 \mathrm{H}, \mathrm{m}), 3.03(0.1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=12.0$
$\mathrm{Hz}), 3.14(0.1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz})$, $3.17(0.1 \mathrm{H}$, br d, J = 12.0 $\mathrm{Hz}), 3.30(0.1 \mathrm{H}, \mathrm{br} d, \mathrm{j}=12.0 \mathrm{~Hz}), 3.39(0.4 \mathrm{H}, \mathrm{br} d, \mathrm{j}=12.0$ $\mathrm{Hz}), 3.47(0.4 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 3.63(0.8 \mathrm{H}, \mathrm{brd} \mathrm{d}, \mathrm{J}=11.1$ $\mathrm{Hz}), 4.27-4.43(1 \mathrm{H}, \mathrm{m}), 5.19(0.1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=18.0$ and 2.4 Hz$)$, $5.30-5.41(1 \mathrm{H}, \mathrm{m}), 5.43-5.52(0.9 \mathrm{H}, \mathrm{m}), 6.48(0.1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 18.0 and 11.4 Hz$), 6.61-6.78(2.5 \mathrm{H}, \mathrm{m}), 6.82-6.91(0.4 \mathrm{H}, \mathrm{m})$, 6.97-7.13 (1H, m), 7.26-7.75 (5H, m); MS m/ z 327 ($\mathrm{M}^{+}-$ 57); HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{OSi}\left(\mathrm{M}^{+}-57\right) 327.2144$, found 327.2136.

41: IR (neat) $1620,3480 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.15(6 \mathrm{H}, \mathrm{s}), 0.97(9 \mathrm{H}, \mathrm{s}), 1.27(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.89-2.00(2 \mathrm{H}, \mathrm{m})$, 2.02-2.14 (1H, m), $2.21(1 \mathrm{H}, \mathrm{br}$ s), 2.38-2.48(1H, m), 3.97 $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}), 4.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.59(1 \mathrm{H}$, dd, J $=2.4$ and 11.4 Hz), $5.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4$ and 17.9 Hz), $6.71(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.87$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.4$ and 17.9 Hz), $7.05\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.1,-4.0,17.7,18.2,18.4,25.9,31.7$, $50.3,82.8,111.5,118.0,120.4,121.0,127.3,130.0,133.2,139.7$, 145.1, 153.0; MS m/z $344\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{OSi}$: C, 73.20; H, 9.36. Found: C, 73.13; H, 9.23.

43 (E:Z/69:31): yield 60\% (from 37); oil; IR (neat) $1630 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.34(2.07 \mathrm{H}, \mathrm{s}), 1.73(0.93 \mathrm{H}, \mathrm{s})$, $1.75-1.83(1 \mathrm{H}, \mathrm{m}), 2.26-2.40(1 \mathrm{H}, \mathrm{m}), 2.44-2.86(2 \mathrm{H}, \mathrm{m}), 2.95$ $(0.31 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.0 \mathrm{~Hz}), 3.28(0.31 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.0 \mathrm{~Hz}), 3.37$ $(0.69 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}), 3.64(0.69 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}), 4.35$ $(0.31 \mathrm{H}, \mathrm{m}), 4.54(0.69 \mathrm{H}, \mathrm{m}), 5.25-5.38(1 \mathrm{H}, \mathrm{m}), 5.67-5.77(1 \mathrm{H}$, $\mathrm{m}), 6.91-7.09(1 \mathrm{H}, \mathrm{m}), 7.10-7.54(8 \mathrm{H}, \mathrm{m}), 7.61-7.75(1 \mathrm{H}, \mathrm{m})$, 7.76-7.82 (1H, m), 8.03-8.10 (1H, m); MS m/z $356\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~S}\left(\mathrm{M}^{+}\right)$356.1599, found 356.1587.

44 ($\mathrm{E}: Z / 69: 31$): yield 98%; oil; IR (neat) $1630 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.28(1.38 \mathrm{H}, \mathrm{s}), 1.30(0.69 \mathrm{H}, \mathrm{s}), 1.61-2.18$ ($1.93 \mathrm{H}, \mathrm{m}$), 2.18-2.46 (1H, m), 2.51-2.91 (2H, m), 2.91-3.24 $(0.62 \mathrm{H}, \mathrm{m}), 3.34-3.49(0.69 \mathrm{H}, \mathrm{m}), 3.56-3.66(0.69 \mathrm{H}, \mathrm{m}), 3.85-$ $4.25(0.31 \mathrm{H}, \mathrm{m}), 4.50-4.66(0.69 \mathrm{H}, \mathrm{m}), 5.17-5.38(1 \mathrm{H}, \mathrm{m})$, 5.63-5.80 (1H, m), 6.79-7.85 (11H, m), 7.86-8.14 (1H, m); MS m/z 355 ($\mathrm{M}^{+}-17$); HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~S}\left(\mathrm{M}^{+}-17\right)$ 355.1521, found 355.1499.

45: yield 71%; oil; IR (neat) $3000 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.19(3 \mathrm{H}, \mathrm{s}), 2.00-2.24(4 \mathrm{H}, \mathrm{m}), 2.48-2.57(1 \mathrm{H}, \mathrm{m})$, $4.15(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}), 4.90(1 \mathrm{H}, \mathrm{s}), 5.08(1 \mathrm{H}, \mathrm{s}), 5.52(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=2.6$ and 18.1 Hz$), 5.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.6$ and 11.5 Hz$)$, $7.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5$ and 18.1 Hz$), 7.37-7.50(3 \mathrm{H}, \mathrm{m}), 7.71$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.1 \mathrm{~Hz}), 7.76-7.85(1 \mathrm{H}, \mathrm{m}), 8.10-8.18(1 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.9,18.5,32.0,50.8,82.9,111.8$, 122.2, 125.1, 125.3, 125.9, 126.1, 127.0, 128.1, 131.6, 132.5, 134.9, 135.4, 145.1; MS m/ z 264 (M+) HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}$ $264.1514\left(\mathrm{M}^{+}\right)$, found 264.1553 .

General Procedure for Cascade Ring Expansion and Insertion Reaction. Procedure for the Reaction of 17 (entry 1 in Table 1). A slurry of the cyclobutanol 17 (10.3 $\mathrm{mg}, 0.042 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(10.9 \mathrm{mg}, 0.042 \mathrm{mmol})$ in DME (0.5 mL) was stirred for 14 h at room temperature. After evaporation of the solvent, the residue was passed through a short pad of silica gel with $\mathrm{Et}_{2} \mathrm{O}$ as eluant to give a mixture of the benzohydrindans 48 and $49(5.5 \mathrm{mg}, 53 \%)$ as a colorless oil.

Characterization Data for Products in Tables 1-3. Samples for analysis were prepared by careful column chromatography of all products in the tables on silica gel using each solvent systems.
$46+47$ (ratio of 6:94, entry 9 in Table 1, AcOEt-hexane 1:99 v/v): oil; IR (neat) $1740 \mathrm{~cm}^{-1}$; ${ }^{1 \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~}$ $\delta 0.68(0.18 \mathrm{H}, \mathrm{s}), 1.07(2.82 \mathrm{H}, \mathrm{s}), 1.78-1.91(1.06 \mathrm{H}, \mathrm{m}), 2.08$ ($0.94 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.0 \mathrm{~Hz}$), 2.28-2.75 ($4 \mathrm{H}, \mathrm{m}$), 2.93-3.07 (1H, $\mathrm{m}), 3.83(3 \mathrm{H}, \mathrm{s}), 5.06(0.94 \mathrm{H}, \mathrm{s}), 5.12(0.06 \mathrm{H}, \mathrm{s}), 5.52(0.94 \mathrm{H}$, s), $5.75(0.06 \mathrm{H}, \mathrm{s}), 6.82-6.89(1 \mathrm{H}, \mathrm{m}), 7.04-7.16(1.94 \mathrm{H}, \mathrm{m})$, 7.21-7.24 ($0.06 \mathrm{H}, \mathrm{m}$); MS m/ z $242\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} 242.1306\left(\mathrm{M}^{+}\right)$, found 242.1297.

47 (entry 15 in Table 1, AcOEt-hexane 1:99 v/v): oil; IR (neat) $1740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.07(3 \mathrm{H}, \mathrm{s})$, $1.79-1.93(1 \mathrm{H}, \mathrm{m}), 2.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.0 \mathrm{~Hz}), 2.28-2.48(3 \mathrm{H}$, $\mathrm{m}), 2.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.0 \mathrm{~Hz}), 3.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.0$ and 10.0 $\mathrm{Hz}), 3.83(3 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{s}), 5.52(1 \mathrm{H}, \mathrm{s}), 6.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 2.2 and 8.0 Hz$), 7.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0$ Hz); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.4,29.4,36.3,37.5,47.0$, $48.3,55.4,108.7,111.9,115.3,129.9,130.2,134.7,139.8,158.2$,

A Novel Palladium-Mediated Cascade Reaction
221.4; MS m/z $242\left(M^{+}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} 242.1306$ $\left(\mathrm{M}^{+}\right)$, found 242.1321 .

48 (entry 1 in Table 1, AcOEt-hexane 1:99 v/v): oil; IR (neat) $1740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.70(3 \mathrm{H}, \mathrm{s})$, 1.95-2.09 (1H, m), 2.06 (3H, s), 2.25-2.39 (1H, m), 2.44 (1H, dd, $\mathrm{J}=8.5$ and 18.0 Hz$), 2.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5$ and 18.0 Hz), $3.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.0$ and 12.0 Hz$), 3.84(3 \mathrm{H}, \mathrm{s}), 6.25(1 \mathrm{H}, \mathrm{s})$, $6.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2$ and 8.2 Hz$), 6.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz})$, $7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.8$, 19.6, 19.8, 37.0, 46.2, 49.3, 55.5, 111.2, 111.3, 125.1, 129.1, 130.0, 133.0, 137.8, 158.6, 216.0; MS m/ z $242\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} 242.1306\left(\mathrm{M}^{+}\right)$, found 242.1299 .

49 (entry 1 in Table 1, AcOEt-hexane 1:99 v/v): oil; IR (neat) $1740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.04(3 \mathrm{H}, \mathrm{s})$, $1.60-1.77(1 \mathrm{H}, \mathrm{m}), 2.07(3 \mathrm{H}, \mathrm{s}), 2.09-2.20(1 \mathrm{H}, \mathrm{m}), 2.23-2.33$ $(2 \mathrm{H}, \mathrm{m}), 3.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.5$ and 11.0 Hz$), 3.84(3 \mathrm{H}, \mathrm{s}), 5.25$ $(1 \mathrm{H}, \mathrm{s}), 6.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2$ and 7.9 Hz$), 6.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2$ $\mathrm{Hz}), 7.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 19.5, 21.4, 29.0, 36.6, 47.4, 52.5, 55.4, 110.4, 112.3, 125.2, 128.8, 129.0, 132.1, 133.4, 158.8, 221.4; MS m/ z 242 (${ }^{+}$); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} 242.1306\left(\mathrm{M}^{+}\right)$, found 242.1304.
$50+51$ (ratio of 20:80, entry 7 in Table 2, AcOEt-hexane $1: 99 \mathrm{v} / \mathrm{v}$): oil ; IR (neat) $1740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.61(0.6 \mathrm{H}, \mathrm{s}), 1.01(2.4 \mathrm{H}, \mathrm{s}), 1.75-2.72(6 \mathrm{H}, \mathrm{m}), 3.08-3.14$ $(1 \mathrm{H}, \mathrm{m}), 3.86(3 \mathrm{H}, \mathrm{s}), 5.34(0.8 \mathrm{H}, \mathrm{s}), 5.41(0.2 \mathrm{H}, \mathrm{s}), 5.96(0.8 \mathrm{H}$, s), $6.09(0.2 \mathrm{H}, \mathrm{s}), 6.77-6.93(2 \mathrm{H}, \mathrm{m}), 7.10-7.24(1 \mathrm{H}, \mathrm{m}) ; \mathrm{MS}$ $\mathrm{m} / \mathrm{z} 242\left(\mathrm{M}^{+}\right)$; HRMS cal cd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} 242.1306\left(\mathrm{M}^{+}\right)$, found 242.1305.

51 (entry 7 in Table 2, AcOEt-hexane 1:99 v/v): oil; IR (neat) $1740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.01(3 \mathrm{H}, \mathrm{s})$, $1.76-1.94(1 \mathrm{H}, \mathrm{m}), 2.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}), 2.26-2.48(3 \mathrm{H}$, m), $2.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}), 3.12(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.4$ and 9.5 $\mathrm{Hz}), 3.86(3 \mathrm{H}, \mathrm{s}), 5.34(1 \mathrm{H}, \mathrm{s}), 5.96(1 \mathrm{H}, \mathrm{s}), 6.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.4 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.8,29.7,37.6,39.5,47.8,48.1$, 55.5, 108.9, 118.0, 121.5, 123.1, 128.2, 135.4, 140.4, 157.4, 220.0; MS m/ z $242\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} 242.1306$ $\left(\mathrm{M}^{+}\right)$, found 242.1320 .

52 (entry 1 in Table 2, AcOEt-hexane 1:99 v / v): oil; IR (neat) $1740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.67(3 \mathrm{H}, \mathrm{s})$, 1.91-2.07 (1H , m), $2.22(3 \mathrm{H}, \mathrm{s}), 2.24-2.38(1 \mathrm{H}, \mathrm{m}), 2.44(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=8.5$ and 16.0 Hz$), 2.66(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5$ and 16.0 Hz$)$, $3.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.5$ and 12.0 Hz$), 3.82(3 \mathrm{H}, \mathrm{s}), 6.17(1 \mathrm{H}, \mathrm{s})$, $6.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=7.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.2,20.2,23.3,37.2$, 47.5, 48.5, 55.6, 111.0, 117.4, 125.1, 128.3, 130.1, 133.5, 139.2, 157.0, 216.3; MS m/z $242\left(M^{+}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$ $242.1306\left(\mathrm{M}^{+}\right)$, found 242.1296 .

53 (entry 1 in Table 2, AcOEt-hexane 1:99 v/v): oil; IR (neat) $1740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.01(3 \mathrm{H}, \mathrm{s})$, $1.71-1.86(1 \mathrm{H}, \mathrm{m}), 2.07-2.40(3 \mathrm{H}, \mathrm{m}), 2.24(3 \mathrm{H}, \mathrm{s}), 2.96(1 \mathrm{H}$, dd, J = 6.9 and 12.0 Hz), $3.81(3 \mathrm{H}, \mathrm{s}), 5.07(1 \mathrm{H}, \mathrm{s}), 6.84(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1$ Hz); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.2,24.3,27.8,36.7,48.9$, $51.8,55.6,111.1,121.4,124.5,128.5,130.2,133.3,139.3,157.6$, 221.7; MS m/ z $242\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} 242.1306$ $\left(\mathrm{M}^{+}\right)$, found 242.1298 .

54i (entry 9 in Table 2, AcOEt-hexane 0.8:99.2 v/v): mp $158-159{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt); IR (CHCl_{3}) 3500, 1730 cm^{-1}; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.61(3 \mathrm{H}, \mathrm{s}), 1.98-2.16$ ($1 \mathrm{H}, \mathrm{m}$), 2.31-2.44(2H, m), 2.52-2.70(2H, m), 2.72-2.91 (2H, $\mathrm{m}), 5.43(1 \mathrm{H}, \mathrm{br}$ s), $5.68(1 \mathrm{H}, \mathrm{br}$ s), $5.84(1 \mathrm{H}, \mathrm{s}), 6.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.1 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.8,20.9,36.5,39.2,46.5,48.6$, 115.0, 116.0, 117.0, 122.2, 128.8, 139.5, 139.7, 153.1, 220.1; MS m/z $228\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} 228.1149\left(\mathrm{M}^{+}\right)$, found 228.1147.

55i (entry 8 in Table 2, AcOEt-hexane 0.8:99.2 v/v): mp $133-134{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt); IR $\left(\mathrm{CHCl}_{3}\right) 3530,1730$ cm^{-1}; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.14(3 \mathrm{H}, \mathrm{s}), 1.75-1.93$ $(1 \mathrm{H}, \mathrm{m}), 2.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}), 2.30-2.48(3 \mathrm{H}, \mathrm{m}), 2.56$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}), 3.13-3.22(1 \mathrm{H}, \mathrm{m}), 5.36(1 \mathrm{H}, \mathrm{s}), 5.59$ $(1 \mathrm{H}, \mathrm{s}), 5.79(1 \mathrm{H}, \mathrm{s}), 6.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 6.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$
$7.5 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 21.8, 29.7, 37.7, 39.9, 47.8, 48.6, 114.1, 114.6, 121.1, 121.5, 129.1, 138.9, 140.7, 153.0, 222.2; MS m/ z 228 (${ }^{+}$); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} 228.1149\left(\mathrm{M}^{+}\right)$, found 228.1182. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$: $\mathrm{C}, 78.92 ; \mathrm{H}, 7.06$. Found: $\mathrm{C}, 78.54 ; \mathrm{H}$, 6.84 .
$56 i$ (entry 2 in Table 2, AcOEt-hexane 0.8:99.2 v/v): mp $94^{\circ} \mathrm{C}$ (from hexane-AcOEt); IR (CHCl_{3}) $3600,1740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.69(3 \mathrm{H}, \mathrm{s}), 1.92-2.08(1 \mathrm{H}, \mathrm{m}), 2.28$ $(3 \mathrm{H}, \mathrm{s}), 2.28-2.51(2 \mathrm{H}, \mathrm{m}), 2.61-2.74(1 \mathrm{H}, \mathrm{m}), 2.99-3.08$ (1 H , $\mathrm{m}), 5.10(1 \mathrm{H}, \mathrm{s}), 6.19(1 \mathrm{H}, \mathrm{s}), 6.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.76$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.2,20.0,22.9,37.0,47.3,48.6,116.1,117.5$, 123.1, 128.4, 130.3, 132.9, 139.7, 153.1, 216.9; MS m/z 228 (M^{+}); HRMS cal cd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} 228.1149\left(\mathrm{M}^{+}\right)$, found 228.1152.

57 i (entry 2 in Table 2, AcOEt-hexane 0.5:99.5 v/v): mp $164{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt); IR (CHCl_{3}) 3640, $1740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.03(3 \mathrm{H}, \mathrm{s}), 1.71-1.86(1 \mathrm{H}, \mathrm{m})$, 2.04-2.19 (1H, m), 2.21-2.30(1H, m), $2.30(3 \mathrm{H}, \mathrm{s}), 2.30-2.42$ ($1 \mathrm{H}, \mathrm{m}$), 2.92-3.01 (1H , m), $5.01(1 \mathrm{H}, \mathrm{s}), 5.08(1 \mathrm{H}, \mathrm{s}), 6.64(1 \mathrm{H}$, br d, J $=7.8 \mathrm{~Hz}), 6.82(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ 7.8 Hz); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5,25.2,29.6,37.6$, 50.2, 52.9, 117.5, 120.9, 122.2, 125.5, 130.4, 135.3, 141.6, 157.1, 221.5; MS m/ z $228\left(\mathrm{M}^{+}\right.$). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$: $\mathrm{C}, 78.92$; H, 7.06. Found: C, 78.83; H, 6.98.
$58+\mathbf{6 0}$ (ratio of 48:52, entry 1 in Table 3, AcOEt-hexane 1:99 v/v): oil; IR (neat) $1740 \mathrm{~cm}^{-1}$; $1 \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 0.55$ ($1.44 \mathrm{H}, \mathrm{s}$), 0.67 ($1.56 \mathrm{H}, \mathrm{s}$), 2.00-2.39 ($2 \mathrm{H}, \mathrm{m}$), 2.39$2.54(1 \mathrm{H}, \mathrm{m}), 2.43(1.56 \mathrm{H}, \mathrm{s}), 2.57-2.75(1 \mathrm{H}, \mathrm{m}), 2.67(0.48 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}), 2.94(0.48 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}), 3.00(0.48 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=6.3$ and 12.0 Hz$), 3.23(0.52 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.3$ and 12.0 Hz), $5.48(0.48 \mathrm{H}, \mathrm{s}), 5.55(0.48 \mathrm{H}, \mathrm{s}), 6.51(0.52 \mathrm{H}, \mathrm{s}), 7.30-7.49$ (3H, m), $7.74-7.88(2 \mathrm{H}, \mathrm{m}), 8.26(0.52 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.41(0.48 \mathrm{H}$, d, J = 9.3 Hz); HRMS cal cd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O} 262.1357\left(\mathrm{M}^{+}\right)$, found 262.1355.

59 (entry 7 in Table 3, AcOEt-hexane 1:99 v/v): oil; IR (neat) $1740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.19(3 \mathrm{H}, \mathrm{s})$, $1.82-1.95(1 \mathrm{H}, \mathrm{m}), 2.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.9 \mathrm{~Hz}), 2.33-2.54(3 \mathrm{H}$, m), $2.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.9 \mathrm{~Hz}), 3.32(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 5.46-$ $5.56(2 \mathrm{H}, \mathrm{m}), 7.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.4 \mathrm{~Hz}), 7.43-7.53(2 \mathrm{H}, \mathrm{m}), 7.74$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.4 \mathrm{~Hz}), 7.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 8.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 8.6 Hz); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.6,29.6,38.0,40.6$, $48.8,49.2,117.9,125.5,125.9,126.4,126.9,128.2,128.5,130.1$, 132.4, 133.2, 136.6, 138.9, 222.5; MS m/ z 262 (M^{+}); HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O} 262.1357\left(\mathrm{M}^{+}\right)$, found 262.1379 .
$\mathbf{6 0}+\mathbf{6 1}$ (ratio of 62:38, entry 4 in Table 3, AcOEt-hexane $1: 99 \mathrm{v} / \mathrm{v}$): oil; IR (neat) $1740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{(} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.67(1.86 \mathrm{H}, \mathrm{s}), 1.15(1.14 \mathrm{H}, \mathrm{s}), 1.82-1.99(0.38 \mathrm{H}, \mathrm{m}), 2.00-$ $2.12(0.62 \mathrm{H}, \mathrm{m}), 2.23-2.39(1 \mathrm{H}, \mathrm{m}), 2.39-2.56(1 \mathrm{H}, \mathrm{m}), 2.43$ ($1.86 \mathrm{H}, \mathrm{s}$), $2.48(1.14 \mathrm{H}, \mathrm{s}), 2.64-2.75(1 \mathrm{H}, \mathrm{m}), 3.07(0.38 \mathrm{H}$, dd, $J=6.3$ and 12.0 Hz$), 3.23(0.62 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.3$ and 12.0 Hz$)$, $5.36(0.38 \mathrm{H}, \mathrm{s}), 6.51(0.62 \mathrm{H}, \mathrm{s}), 7.33-7.49(3 \mathrm{H}, \mathrm{m}), 7.74-7.88$ $(2 \mathrm{H}, \mathrm{m}), 8.26(0.62 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.38(0.38 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7$ $\mathrm{Hz})$; MS m/z $262\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O} 262.1357$ $\left(\mathrm{M}^{+}\right)$, found 262.1354.

6-(3-Hydroxy-2-vinylphenyl)-2-methyl-1-hexen-3-one (62i): oil; IR (neat) $3400,1660 \mathrm{~cm}^{-1}$; ${ }^{1 \mathrm{H}}-\mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.82-1.94(5 \mathrm{H}, \mathrm{m}), 2.60(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}), 2.70(2 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 5.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8$ and 18.3 Hz$), 5.62(1 \mathrm{H}, \mathrm{br}$ s), $5.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8$ and 11.4 Hz$), 5.75(1 \mathrm{H}$, br s), 5.90 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz})$, $7.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 230\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} 230.1307\left(\mathrm{M}^{+}\right)$, found 230.1307.

Supporting Information Available: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of compounds 12-14, 16, 17, 21, 30, 35, 39, 40, 43-45, 46+47, 47-49, 51-53, 54i, 56i, 58 +59,59, $60+61$, and 62 (26 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

J O971377Z

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, October 1, 1997.
 (1) F or reviews, see: (a) Heck, R. F. Org. React. 1982, 27, 345-390. (b) Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: New York, 1985. (c) Trost, B. M Acc. Chem. Res. 1990, 23, 3442. (d) Trost, B. M. J anssen Chimica Acta 1991, 9, 3-9. (e) Oppolzer, W. In ComprehensiveOrganic Synthesis; Trost, B. M., Fleming, I., Eds., Pergamon Press: Oxford, 1991, Vol. 5, p 29-84. (f) de Meijere, A.; Meyer, F. E. Angew. Chem. Int. Ed. Engl. 1994, 33, 2379-2411. (g) Tsuji, J. Palladium Reagents and Catalysts Innovations in Organic Synthesis; J ohn Wiley \& Sons: London, 1995. (h) Negishi, E.; Copéret, C.; Ma, S.; Liou, S.-Y.; Liu, F. Chem. Rev. 1996, 96, 365-393. (i) Tietze, L. F. Chem. Rev. 1996, 96, 115-136. (j) Malacria, M. Chem. Rev. 1996, 96, 289-306.
 (2) F or recent works in this area, see: (a) Luo, F. T.; Chou, F. L.; Wang, R. T. J. Org. Chem. 1990, 55, 4846-4849. (b) Negishi, E.; Noda, Y.; Lamaty, F.; Vawter, E. J. Tetrahedron Lett. 1990, 31, 4393-4396. (c) Nuss, J. M.; Levine, B. H.; Rennels, R. A.; Heravi, M. M. Tetrahedron Lett. 1991, 32, 5243-5246. (d) Trost, B. M.; Pfrengle, W.; Urabe, H.; Dumas, J J J. Am. Chem. Soc. 1992, 114, 1923-1924. (e) Trost, B. M.; Shi, Y. J. Am. Chem. Soc. 1992, 114, 791-792. (f) Negishi, E.; Harring, L. S.; Owczarczyk, Z.; Mohamud, M. M.; Ay, M. Tetrahe dron Lett. 1992, 33, 3253-3256. (g) Takacs, J. M.; Zhu, J.; Chandramouli, S. J. Am. Chem. Soc. 1992, 114, 773-774. (h) Nuss, J. M.; Murphy, M. M.; Rennels, R. A.; Heravi, M. H.; Mohr, B. J. Tetrahedron Lett. 1993, 34, 3079-3082. (i) Kucera, D. J.; O’Connor, S. J .; Overman, L. E. J. Org. Chem. 1993, 58, 5304-5306. (j) Brown, S.; Clarkson, S.; Grigg, R.; Sridharan, V. Tetrahedron Lett. 1993, 34, 157-160. (k) Trost, B. M.; Gelling, O. T. Tetrahedron Lett. 1993, 34, 8233-8236. (I) Trost, B. M.; Czeskis, B. A. Tetrahedron Lett. 1994, 35, 211-214. (m) Trost, B. M.; Parquette, J. R.; Marquart, A. L. J. Am. Chem. Soc. 1995, 117, 3284-3285. (n) Trost, B. M.; Gerusz, V. J. J. Am. Chem. Soc. 1995, 117, 5156-5157. (o) Trost, B. M.; Mcl ntosh, M. C. J. Am. Chem. Soc. 1995, 117, 7255-7256. (р) Ma, S.; Negishi, E. J. Am. Chem. Soc. 1995, 117, 6345-6357.
 (3) F or applications to natural product synthesis, see: (a) Abelman, M. M.; Overman, L. E.; Tran, V. D. J . Am. Chem. Soc. 1990, 112, 69596964. (b) Grimins, D. L.; Baevsky, M. F.; Hong, H.J. Am. Chem. Soc. 1992, 114, 10971-10972. (c) Hudlicky, T.; Olivo, H. F. J. Am. Chem. Soc. 1992, 114, 9694-9696. (d) Hong, C. Y.; Kado, N.; Overman, L. E. J. Am. Chem. Soc. 1993, 115, 11028-11029. (e) Rawal, V. H.; Michoud, C.; Monestel, R. F. J. Am. Chem. Soc. 1993, 115, 3030-3031. (f) Masters, J. J.; J ung, D. K.; Bornmann, W. G.; Danishefsky, S. J Tetrahedron Lett. 1993, 34, 7253-7256.
 (4) F or reviews dealing with the cascade chemistry, see: (a) Posner, G. H. Chem. Rev. 1986, 86, 831-844. (b) Ho, T.-L. Tandem Organic Reactions; Wiley: New Y ork; 1992. (c) Waldmann, H. Nachr. Chem. Tech. Lab. 1992, 40, 1133-1140. (d) H offmann, H. M. R. Angew. Chem. Int. Ed. Engl. 1992, 31, 1332-1334. (e) Tieze, L. F.; Beifuss, U. Angew. Chem. Int. Ed. Engl. 1993, 32, 131-163. (f) Davies, H. M. L. Tetrahedron 1993, 49, 5203-5223. (g) Bunce, R. A. Tetrahedron 1995, 51, 13103-13159. (h) Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996, 96, 137-165. (i) Winkler, J. D. Chem. Rev. 1996, 96, 167-176. (j) Ryu, I.; Sonoda, N.; Curran, D. P. Chem. Rev. 1996, 96, 177-194. (k) Parsons, P. J.; Penkett, C. S.; Shell, A. J. Chem. Rev. 1996, 96, 195-206. (I) Wang, K. K. Chem. Rev. 1996, 96, 207-222. (m) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223-269. (n) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307-338. (o) Snider, B. B. Chem. Rev. 1996, 96, 339-363.

[^1]: (10) Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 30333040.
 (11) Stafford, J. A.; McMurry, J. E. Tetrahedron Lett. 1988, 29, 2531-2534.
 (12) Narasimhan, N. S.; Mali, R. S.; Barve, M. V. Synthesis 1979, 906-909.
 (13) The stereochemistry of 17, 24, 31, and 37 was confirmed by the observation of the definite NOE between methyl protons of isopropenyl group and adjacent methine proton in these NMR spectra, which were observed at 1.83 and 3.95 ppm for 17, 1.85 and 4.17 ppm for 24, 1.84 and $4.12-4.19$ ppm for 31, and 1.84 and 4.30 ppm for 37 , respectively.
 (14) Brown, W. L.; Fallis, A. G. Tetrahedron Lett. 1985, 26, 607610. The direct formation of the sulfoxides $\mathbf{4 0}$ and 44 by treatment of 31 and 37 with phenylsulfenyl chloride under basic condition was failed.

[^2]: (15) The stereochemistry of these product in Tables $1-3$ was confirmed by the observation of the definite NOE between methyl and methine protons at angular positions in these NMR spectra, which were observed at 1.07 and 3.05 ppm for $47,1.04$ and 3.01 ppm for 49, 1.01 and 3.12 ppm for 51, 1.01 and 2.96 ppm for 53, 1.14 and 3.133.22 ppm for $55 \mathrm{i}, 1.03$ and $2.92-3.01 \mathrm{ppm}$ for $57 \mathrm{i}, 1.19$ and 3.32 ppm for 59 , and 1.15 and 3.07 ppm for 61, respectively. In addition to these data, the general tendencies that the angular methyl group of this type of trans-benzohydrindan resonates at higher field than that of corresponding cis isomer in its NMR spectrum because of the shielding effect of aromatic ring have been recognized (see ref 6).
 (16) Larock, R. C.; Hightower, T. R.; Kraus, G. A.; Hahn, P.; Zheng, D. Tetrahedron Lett. 1995, 36, 2423-2426. Under this condition, the enone 62 was produced in 22% yield beside the cascade products $54-$ 57. The structure of $\mathbf{6 2}$ was characterized as its deprotected derivative 621.

